首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72409篇
  免费   8360篇
  国内免费   3072篇
电工技术   2061篇
技术理论   1篇
综合类   3091篇
化学工业   26304篇
金属工艺   10160篇
机械仪表   1348篇
建筑科学   1805篇
矿业工程   959篇
能源动力   1374篇
轻工业   9171篇
水利工程   317篇
石油天然气   1134篇
武器工业   360篇
无线电   4038篇
一般工业技术   17207篇
冶金工业   2930篇
原子能技术   439篇
自动化技术   1142篇
  2024年   308篇
  2023年   1748篇
  2022年   2405篇
  2021年   3283篇
  2020年   3088篇
  2019年   2709篇
  2018年   2933篇
  2017年   3344篇
  2016年   3347篇
  2015年   3463篇
  2014年   4088篇
  2013年   5268篇
  2012年   4749篇
  2011年   5753篇
  2010年   3910篇
  2009年   4253篇
  2008年   3558篇
  2007年   3910篇
  2006年   3716篇
  2005年   2921篇
  2004年   2848篇
  2003年   2434篇
  2002年   1970篇
  2001年   1317篇
  2000年   1081篇
  1999年   829篇
  1998年   731篇
  1997年   621篇
  1996年   522篇
  1995年   500篇
  1994年   365篇
  1993年   273篇
  1992年   274篇
  1991年   234篇
  1990年   252篇
  1989年   251篇
  1988年   94篇
  1987年   61篇
  1986年   67篇
  1985年   83篇
  1984年   80篇
  1983年   41篇
  1982年   65篇
  1981年   10篇
  1980年   36篇
  1979年   6篇
  1978年   6篇
  1976年   6篇
  1975年   6篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《Ceramics International》2022,48(9):12118-12125
In this study, (Cu1/3Nb2/3)4+ complex cation and BaO–ZnO–B2O3 glass frit were adopted to solve the high sintering temperature and poor temperature stability of Ba3Nb4Ti4O21 ceramics. It is shown that pure Ba3Nb4Ti4O21 phase was formed when Ti site was partially replaced by (Cu1/3Nb2/3)4+ cation. The increasing number of dopants decreases the dielectric polarizability, correspondingly, the dielectric constant and temperature coefficient of the resonance frequency values are reduced consistently. The variation of the Q × f value is determined by internal ionic packing fraction and external sintering densification. The (Cu1/3Nb2/3)4+ cation effectively decreases the suitable sintering temperature from 1200 to 1050 °C while greatly improving the temperature stability. BaO–ZnO–B2O3 glass was used to further improve the low-temperature sintering characteristics of Ba3Nb4Ti4O21 ceramics. It is proven that the addition of glass frits effectively decreases the temperature to 925 °C with combinational excellent microwave dielectric properties: εr ~55.6, Q × f ~5700 GHz, τf ~3 ppm/°C, making the Ba3Nb4Ti4O21 ceramics promising in the applications of low-temperature cofired ceramic technology.  相似文献   
12.
《Ceramics International》2022,48(17):24157-24191
Great progress in the development of low-cost ceramic membranes from alternative materials have been achieved recently towards various application especially water and wastewater treatment. However, their significance has not been fully recognized and understood especially in term of their microstructural analysis such as formation of grain growth and microcracks. This review paper summarizes fabrication method, alternative materials, microstructure, wettability, mechanical properties and application of low-cost ceramic membrane. The fabrication method including slip casting, tape casting, extrusion, pressing method and phase inversion technique are described. Alternative materials used in low-cost ceramic membrane fabrication are discussed and categorized into clays, agricultural waste, industrial waste and animal bone waste. The mechanisms of morphology formation, microstructure and wettability properties are analysed. Modification strategies for the surface of low-cost ceramic membrane are discussed, and classified into modification for separation application, modification for photocatalytic application and modification for membrane distillation and membrane contactor system. Modification improves the membrane structure by changing the pore size, porosity and wettability properties of low-cost ceramic membranes. Mechanical properties of low-cost ceramic membranes are also discussed in detail towards several mechanism, like grain growth phenomenon and formation of microcracks which also considered as membrane defects. Grain growth phenomenon can be divided into normal and abnormal grain growth. Meanwhile, formation of microcracks could be occurred in single-phase polycrystalline ceramics that have anisotropic grains or biphasic polycrystalline grains. The application of low-cost ceramic membrane in seawater desalination, oily wastewater treatment, heavy metal adsorption, textile separation and photocatalytic application are reviewed. Finally, some possible opportunities and challenges for further development of low-cost ceramic membrane are pointed out.  相似文献   
13.
《Ceramics International》2022,48(24):36802-36813
X-type samarium-cadmium co-substituted hexaferrite with compositions Ba2-xSmxCo2CdyFe28-yO46 (0.00 ≤ x ≤ 0.08, and 0 ≤ y ≤ 0.4) were prepared at 1340 °C using a simple heat treatment technique. All heated samples were characterized using FTIR, XRD, SEM, VSM, M?ssbauer, and low-frequency dielectric measurements. XRD analysis of prepared samples shows the formation of X as a major phase along with hematite. The MS value varied from 67.01 Am2/kg to 50.43 Am2/kg; whereas the Hc value changed from 2.95 kA/m to 6.17 kA/m, A high value of MS (67.01 Am2/kg) is observed in the pure sample, and a very low value of Hc (2.95 kA/m) is observed for x = 0.06, y = 0.3 compositions, but Mr/Ms < 0.5 confirm the multi-domain nature of prepared hexaferrites. Hysteresis loops of all samples are narrow, and confirmed that formed samples belong to magnetically soft. Mössbauer spectra of the three samples (S1, S3, and S5) show the existence of doublets. Significantly low values of coercivity, retentivity, and loss tangent in Sm–Cd substituted samples signified those prepared materials can be used to design electromagnets, transformer cores, electric motors, and maybe a potential candidate for lossless low-frequency applications.  相似文献   
14.
In this work, Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 (x = 0–0.1) microwave dielectric ceramics were fabricated using a solid state synthesis route. Rietveld refinement of the XRD data revealed that all ceramic samples have formed a single phase with olivine structure. SEM images showed that the samples have a dense microstructure, that agrees with the measured relative density of 97.73 %. Based on the complex chemical bond theory, Raman and infrared reflectance spectra, we postulate that εr is mainly affected by the ionic polarizability, lattice and bond energy, while P-O bond plays a decisive role in Q×f and τf value. Optimum properties of Q×f ~ 153,500 GHz, εr ~ 7.13 and τf ~ ?59 ppm/°C were achieved for the composition LiMg0.9Zn0.06Ni0.04PO4 sintered at 875 ℃ for 2 h. This set of properties makes these ceramics an excellent candidate for LTCC, wave-guide filters and antennas for 5 G/6 G communication applications.  相似文献   
15.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
16.
以正辛基三乙氧基硅烷和3-巯基丙基三乙氧基硅烷为改性剂,以双氧水为氧化剂,在水基环境下对亲水纳米SiO2颗粒表面进行改性,得到具有磺酸基和辛基的双亲纳米SiO2颗粒,并通过红外和热重对其化学结构和热稳定性进行分析。将双亲纳米SiO2颗粒分散在地层水中制备纳米流体,并评价纳米流体的稳定性、界面性质和渗吸效率。利用核磁共振技术探究纳米流体渗吸过程中岩心孔隙内原油运移规律。结果表明,纳米流体储存30 d未出现分层现象,表现出良好的稳定性;经纳米流体处理的岩心亲水性增强。此外,双亲纳米SiO2颗粒将油水界面张力降低至1.7 mN/m;纳米流体渗吸采收率高达22.6%,渗吸初始阶段小孔隙中的原油被动用,而在渗吸后期阶段大孔隙中的原油才被动用。  相似文献   
17.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
18.
The rapid increase in energy consumption has severely rehabilitated human life urging to develop reliable and environmental friendly energy storage devices. Target oriented, systematic approach has been adopted to synthesis La doped CeO2 nanostructures with percentage as LaxCe1-xO2 (X = 0,1,3,5,7) for potential super capacitors applications. Morphological doping impact on H2 production, electrochemical and optical properties are thoroughly investigated. XRD studies revealed the crystalline phase purity and attained approximately 35 nm average crystallite size. The SEM images exposed that primary morphology nano-particles has been tuned into nanorods by increasing the La concentration in CeO2 with size range 40~60 nm. CV graphs depicted that the prepared electrodes obey the pseudo capacitive faradaic reactions behavior in nature. Maximum capacitance (925 F g-1) has been achieved by La0·05Ce0·95O2 which is better than numerous reported materials. The La0·05Ce0·95O2 also exhibited excellent GCD stability with 87.8% retention exhibiting it suitability for supercapacitor applications. Furthermore, the La0·05Ce0·95O2 showed the significantly higher H2 (9 μmol h?1g?1) production rate as compared to undoped CeO2 and La0·01Ce0·99O2, La0·03Ce0·97O2 samples. This higher production is attributed to the recombination rate and have strong substantial correlation with optical characteristics.  相似文献   
19.
Photocatalytic water splitting has become a promising technology to solve environmental pollution and energy shortage. Exploring stable and efficient photocatalysts are highly desired. Herein, we propose novel low-dimensional InSbS3 semiconductors with good stability based on density functional theory. Such InSbS3 structures could be obtained from their bulk crystal by suitable exfoliation methods. Our calculations indicate that two-dimensional (2D) and one-dimensional (1D) InSbS3 nanostructures have moderate band gaps (2.54 and 1.97 eV, respectively) and suitable band edge alignments, which represents sufficient redox capacity for photocatalytic water splitting. 2D InSbS3 monolayer possesses oxygen evolution reaction (OER) activity and 1D InSbS3 single-nanochain possesses hydrogen evolution reaction (HER) activity under acidic conditions. Interestingly, two edge electron states can be introduced when the dimension of InSbS3 is reduced from 2D to 1D and the new electron states can exist in arbitrary-width nanoribbons, which can effectively promote the process of HER. Moreover, InSbS3 monolayer and single-nanochain also exhibit large solar-to-hydrogen efficiency, high carrier mobility, and excellent optical absorption properties, which can facilitate the process of photocatalytic reactions. Our findings can stimulate the synthesis and applications of low-dimensional InSbS3 semiconductors for overall water splitting.  相似文献   
20.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号